- Which if the following form a sequence?
(i) 4, 11, 18, 28….
(ii) 43, 32, 21, 10….
(iii) 27, 19, 40 , 70….
(iv) 7, 21, 63, 189…
Solution:
(i) 4, 11, 18, 28…. – forms a sequence
(ii) 43, 32, 21, 10….
10, 21, 32, 43…. – forms a sequence
(iii) 27, 19, 40 , 70…. – not a sequence
(iv) 7, 21, 63, 189… – forms a sequence
- Write the next two terms of the following sequences
(i) 13, 15, 17, __, ___
(ii) 2/3, 3/4, 4/5, __, ___
(iii) 1, 0.1, 0.01, ___, __
(iv) 6, 1, 24, ___, ___
Solution:
(i) 13, 15, 17, 19, 21
(ii) 2/3, 3/4, 4/5, 5/6, 6/7
(iii) 1, 0.1, 0.01, 0.001, 0.0001
(iv) 6, 12, 24, 48, 96
- If Tn = 5 – 4n, find first three terms
Solution:
For n = 1,
T1 = 5 – 4×1 = 5 – 4 = 1
For n = 2
T2 = 5 – 4×2 = 5 – 8 = – 3
For n = 3
T3 = 5 – 4×3 = 5 – 12 = – 7
- If Tn = 2n2 + 5, find (i) T3 and T10
Solution:
If Tn = 2n2 + 5 then T3 = 2(3)2 + 5
= 2(9) + 5
= 18 + 5
= 23
For T10 = 2(10)2 + 5
= 2(100) + 5
= 200 + 5
= 205
- If Tn = n2 – 1 , find (i) Tn-1 (ii) Tn+1
Solution:
If Tn = n2 – 1 then, Tn-1 = (n – 1)2 – 1
= n2 – 2n + 1 – 1
= n2 – 2n
If Tn = n2 – 1 then, Tn+1 = (n+1)2 – 1
= n2 + 2n + 1 – 1
= n2 + 2n
- If Tn = n2 + 4 and Tn = 200, find the value of ‘n’
Solution:
Given, Tn = n2 + 4 and Tn = 200, we have to find the value of n
200 = n2+ 4
200 – 4 = n2
196 = n2
n = 13
Next exercise – Progressions – Exercise 2.2 – Class X